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The large-N limit of the discrete cubic and chiral cubic models 

P Reinicke 
Physikalisches Institut der Universitat Bonn, Nussallee 12, D-5300 Bonn 1, West Germany 

Received 25 April 1985 

Abstract. The mean-field theory of the discrete cubic and chiral cubic systems is shown 
to be exact in the N + limit. 

1. Introduction 

In 1974 Mittag and Stephen conjectured that the mean-field theory of the N-state Potts 
model is exact in the limit N + CO. This conjecture was proved by Pearce and Griffiths 
(1980). Hpre we will show that the large-N limit of the discrete cubic and chiral cubic 
models is mean field too, thus proving the conjecture of Badke et a1 (1985). The proof 
of this statement for the discrete cubic model is, except for some minor differences, 
the same as that given by Pearce and Griffiths for the N-state Potts model. Nevertheless 
we will give the proof explicitly, since we will use the solution to show that the large-N 
limit of the chiral cubic model is mean field, too. 

The rest of this section is devoted to a precise statement of the results. In 09 2 and 
3 we obtain upper and lower bounds on the free energy of the discrete cubic model. 
In 00 4 and 5 the same is done for the chiral cubic model. 

The Hamiltonian of the discrete cubic model is (Nienhuis er a1 1983 and references 
therein) 

= -; [K*, , ( -1)"*-"jw,  - & I +  K*,,WI --P,)I 
I , J E A  

where the vectors i and j label the sites of a regular infinite lattice 2, A is a finite 
subset of 2, and the 2N possible states at each site are given by ai = 0, 1 and 
pi = 0, 1, . . . , N - 1. The partition function is 

where p = l/kT. The free energyper site + ( p )  in the thermodynamic limit is given by 

- P + ( P )  = lim 1 ~ 1 - l  In Z,,(P) (3) 
A -3 

where 1111 is the number of sites in A, 
We will assume that the interactions are ferromagnetic and translationally invariant, 

K a t ,  = K , ( i - j ) a O  

with sufficiently rapid decay 
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( a  = 1,2) (4) 

(5) 
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Under these conditions (see Ruelle 1969) the limiting free energy (3) exists and does 
not depend on the choice of the boundary conditions. We will prove the following. 

Theorem 1 .  Let $ ( p )  be the free energy (3) for the discrete cubic system ( l ) ,  with 
interactions satisfying (4) and ( 5 )  and h l ,  h2 3 0. Then in the large-N limit 

lim + ( p  In N)  = lim ( L M F ( P  In N )  = $ - ( p )  
N--2 N-w 

where $ M F  ( p )  is the mean-field free energy and 

The factor In N which appears in the argument of $ in (6) is essential in order to 
obtain a non-trivial result in the limit N + 00. 

The Hamiltonian of the chiral cubic model is (Badke et a1 1985) 

H=-; C J  p,~p(gig,') - C C hpxp(gt), gEWN, (8) 
iJeA p I E A  p 

where WN is the group of all N x N orthogonal matrices with integer elements and 
,Y& is the character function corresponding to the irreducible representation p of WN. 
In the following we will restrict our investigations to the vector representation, since 
it is the smallest faithful irreducible representation of WN. Hence, taking x for the 
character of the vector representation, 

where the factor N-'  has been introduced for convenience. The partition function is 

and the free energy per site is 

We will prove the following. 

Theorem 2. Let 4 ( p )  be the free energy (11) for the chiral cubic model (9), with 
interactions satisfying 

(12) 

and h 3 0. Then in the large-N limit 

lim 4 ( P N  In N )  = lim 4 M F ( P N  In N )  = 4&) 
N--2 N-m 

where 4MF ( p )  is the mean-field free energy and 
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2. The mean-field free energy of the discrete cubic model 

Let H be defined by (1) and impose periodic boundary conditions so that 

K:= c K4,,+K4 as A+2 ' (a=1,2)  
J E t  

and K ," do not depend on i. 
For any other Hamiltonian Ho the following inequality holds: 

1141-' In Z,(P) = IAl-'(In z~ , (P )+ ln (exp[ -p (H - HO)l)O) 
(16) 

where Z0,(P) = Z  exp(-PHo), ( X ) , =  2;: Z X exp(-PHo) and 2, is given by ( 2 ) .  The 
inequality follows from the convexity of the exponential function. In order to calculate 
the mean-field free energy one has to use the RHS of (16) choosing Ha as follows (see, 
for example, Ditzian et a1 1980): 

2 I.W(ln ZO,(P)  - P W  - H0)O) 

where 

(The factor of 2 is due to the double counting in (1). We have used the identity 
a(/?, - P j )  = 2,";' a(/?, - I )  S ( P j  - I ) . )  Due to translation invariance and the symmetry 
of the interactions, we have 

where the values of p and 4 maximise the RHS of (16) with 0 5 4 s 1 and IpI s 4. For 
convenience, we will choose the order parameter q = 4 - N - '  instead of 4. If we now 
evaluate the RHS of (16), maximise it with respect top  and q and take the thermodynamic 
limit we obtain 

- P + ( P )  3 - P + M F ( P )  

2 cosh[P(pK, + h , ) ]  exp[P(qK2+ h,)] 

After replacing /3 by P In N one obtains in the limit N + CD 

lim (L(p In N ) s  lim (LMF(P In N )  = (L,(P) (21) N 'a2 N-CC 

where (L,(P) is given by ( 7 ) .  

3. A lower bound on + 
For the sake of completeness, we will copy in this section the bound of Pearce and 
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Griffiths (1980), adapted to the special properties of the discrete cubic model?. To 
obtain an upper bound on the partition function and thus a lower bound on the free 
energy IC, it is convenient to employ a different set of boundary conditions on the finite 
subset A, and to restrict the interactions to finite range. Namely, we will assume that 
a, = P ,  = 0 for all sites i not in A,  and write 

H R = - i  [ K ~ , ( - l ) n ' - U , G ( P , - P , ) + K z R , , ~ ( P I - P , ) l  
l€\J€z 

- h ,  c (-1)a3w3,)-h2 c S ( P , )  
I €  \ I G A  

where, for a fixed distance R, we define the truncated interactions 

The minimum value of H R ,  

fi= - l A l ( i K p + f K t + h l + h 2 ) ,  

occurs when all a, and P,  are equal to zero. The basic inequality H R 5 H  can now 
be improved by using graphical methods. With every configuration of the system, i.e. 
with every choice of the a ,  and PI, i E A, associate a graph G whose vertices are the 
sites at which P ,  # 0, with edges connecting the vertices provided Pt = P,( # 0) and 
l i - j l <  R. Let p be the number of connected components in G. The number of 
configurations associated with the same graph G cannot exceed 2IA' ( N  - l)*, since 
a ,  = 0 , l  and the PI are identical in each component. The number of distinct graphs 
is itself bounded by 2"iz/2, where Z is the number of sites on the lattice within a 
distance R of a particular site. This estimate holds because a graph is determined by 
specifying all its edges, and there are at most 4lAlZ possible edges connecting pairs 
of sites in h separated by a distance less than R. 

We now assert that 

H R z H + p ( f K P + f K 2 R + h 1 + h 2 )  (25) 

where p is defined for a choice of P I  in the manner described above. To see this, note 
first that the number of sites with P, f 0 is at least p ;  this accounts for the p ( h ,  + h2) 
term in (25). Next, note that for any connected component C in the graph G and for 
any vector r connecting two sites in 2, there will always be some site i in C such that 
i + r is not in C. Now if i E C and ( i +  r )  C, then P ,  f P I + ,  provided lr/ < R, and thus 
the corresponding term in (22) is zero, rather than - ( $ K f ( r ) + ; K F ( r ) )  as it is in 
the case where all a, and PI are zero. Since for each component and for each r with 
Irl< R we can identify a corresponding increment in H R  over R, we have established 
the validity of the p(fKf+$K:) term in (25). 

Collecting terms we have 

Z,R(P) s 2='*1'2 exp(-P~)2*1 { N  e x p [ - P ( f K f + ~ K ~ + h ~ + h ~ ) ] } *  
p = O  

=S2(2~2+1)"' exp(-PH){l+ N exp[-P( fKP+$Kt+h,  +h2)]} lhl .  (26) 

t I t  is also possible to obtain a lower bound on @ with algebraic bounds along the lines of Pearce (1984) 
instead of by the graphical methods used here. Doing this one obtains 

@(p In N)=t - (p  In N)-'[[ln2+ln{exp[p In N(fK,+~K,+h,+h,)l+N-l}B~ 
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Using (3) and (24) it follows that 

+ ," (p )  3 -p-'(l +Z/2 )  In 2-p- '  In{ N+exp[p ( tKp+fKf  + h l +  h2)]). (27) 

After replacing /3 by p In N in this expression, one obtains 

where + z ( p )  is given by (7) with K f  in place of K ,  ( a  = 1,2). Combining (21) and 
(28), theorem 1 is proved for interactions of strictly finite range. 

When the interactions are not of strictly finite range, but ( 5 )  is satisfied, our 
arguments yield (7) provided the limit R + CO is taken after the limit N + CO, since 

Now standard arguments (Ruelle 1969) can be used to show that for any finite N and 
P, 

so that in view of (29) the convergence of + R  to + as R +CO is uniform in N and p, 
which means that the limits N + CO and R + CO are interchangeable. Thus theorem 1 is 
proved. 

4. The mean-field free energy of the chiral cubic model 

Let H be defined by (9) and impose periodic boundary conditions so that 

J,' = 1 JIJ + J a s A + 2  
J E h 

and J A  does not depend on i. 
Here again we will use the inequality 

IW' ln Z A ( P )  3 l~ l - 'Un z0,,(p) -PW - H ~ ) ~ )  (32) 
where now 2 is given by (lo),  ZO=X exp(-PHo) and Ho has to be chosen as follows 
in order to get the mean-field theory: 

( ~ o t i c e  that x(gig, ' )  = x(gig:) = ~ F l = ~ ( g i ) ~ l  (gj1k.l.) 
Due to the symmetry of the interactions, we have 

(Ai)  k/ = aJ* (35) 
where the value of a maximises the RHS of (32) with O S  a s 1. If we now evaluate 
the RHS of (32), maximise it with respect to a and take the thermodynamic limit we 
obtain 
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After replacing p by PN In N in (36) one obtains in the limit N+co 

lim 4 ( P N  In N ) c  lim &F(PN In N )  = & ( P )  (37) 
N+CC N+CC 

where & ( P )  is given by (14). 

Clearly Z:="=_, G ( N ,  k )  = 2"!. For k s O  Baake (1984) gives the formula 
To see this, let G (  N, k )  be the number of group elements of WN with x ( g )  = k. 

[ (  N - K  1/21 N - k - 2 u  

G ( N ,  k ) = 2 N - k N !  1 [ 2 2 Y ~ ! ( ~ + k ) ! ] - '  ( - l ) p / p ! ,  
" = O  p=O 

G ( N ,  - k )  = G ( N ,  k ) .  

Having this formula one can easily show that 

f G( N, k - 1)  C kG( N, k )  s G (  N, k - 1 )  for 1 s k s  N -2.  

Let 

f (  N ;  y )  = ( N  In N ) - '  In 
k = - N  

Using (39) one can show that 

(38) 

(39) 

and taking the limit N + oc one obtains (37). 

5. A lower bound on 6 

To get an upper bound on the partition function of the chiral cubic model, we will 
first write the Hamiltonian (9) in a more convenient form. Every group element g E WN 
(see Baake 1984) can be labelled by an N-component vector a, with components equal 
to zero or one, and a permutation T of N objects; so g = (a ,  T ) .  In this notation we 
have 

N 

x(glgJ- ')  = (-l)"~"-"J"s(T,( v)- T,( v)). 
" = I  

(43) 

Hence the Hamiltonian (9) reads 
N / 

Let 



Large-N limit of cubic models 773 

I?v and bi = (b i , ,  . . . , bi,) then where v = 1,. . . , N and biP = 1, .  . . , N. If I? = N-' 
one has for the partition function of the chiral cubic model (44) 

z,(P)= C ~ X P ( - P W ~  C exp(-Pfi) 
{az ,mz 1 {a, ,b,}  

where Z,,,(P) is the partition function of the discrete cubic model (1) with K12, = Jij ,  
h ,  = h and Kz,, = h, = 0. 

So we get for the free energy 

4 ( P ) S  4 v " .  (47) 

lim 4(PN In N) 2 lim 4(P In N)  = & ( P ) .  
Thus from theorem 1 and (14) 

(48) 
N-rm N-rW 

With ( 3 7 )  and (48) the proof of theorem 2 is complete. 
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